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Abstract

This paper presents a new unsupervised change detection methodology for multispectral images applied to specific land covers. The
proposed method involves comparing each image against a reference spectrum, where the reference spectrum is obtained from the spec-
tral signature of the type of coverage you want to detect. In this case the method has been tested using multispectral images (SPOTS) of
the community of Madrid (Spain), and multispectral images (Quickbird) of an area over Indonesia that was impacted by the December
26, 2004 tsunami; here, the tests have focused on the detection of changes in vegetation. The image comparison is obtained by applying
Spectral Angle Mapper between the reference spectrum and each multitemporal image. Then, a threshold to produce a single image of
change is applied, which corresponds to the vegetation zones. The results for each multitemporal image are combined through an exclu-
sive or (XOR) operation that selects vegetation zones that have changed over time. Finally, the derived results were compared against a
supervised method based on classification with the Support Vector Machine. Furthermore, the NDVI-differencing and the Spectral
Angle Mapper techniques were selected as unsupervised methods for comparison purposes. The main novelty of the method consists
in the detection of changes in a specific land cover type (vegetation), therefore, for comparison purposes, the best scenario is to compare
it with methods that aim to detect changes in a specific land cover type (vegetation). This is the main reason to select NDVI-based
method and the post-classification method (SVM implemented in a standard software tool). To evaluate the improvements using a ref-
erence spectrum vector, the results are compared with the basic-SAM method. In SPOTS5 image, the overall accuracy was 99.36% and the
Kk index was 90.11%; in Quickbird image, the overall accuracy was 97.5% and the x index was 82.16%. Finally, the precision results of the
method are comparable to those of a supervised method, supported by low detection of false positives and false negatives, along with a
high overall accuracy and a high kappa index. On the other hand, the execution times were comparable to those of unsupervised methods
of low computational load.
© 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction observation at different times (Singh, 1989). In general,
CD involves the application of multitemporal (MT) data-

Change detection (CD) is the process of identifying dif- sets to quantitatively analyze temporal effects of a phe-
ferences in the state of an object or phenomenon through nomenon (Lu et al.,, 2004). Although change detection
techniques in remote sensing have had a significant increase

in the last three decades, there is still work to do, such as
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Generally, in a CD project, three main stages can be
identified: (1) pre-processing, (2) selection of appropriate
techniques to implement the analysis of CD, and (3) accu-
racy assessment of the results. Additionally, there are four
important components to consider with regard to this pro-
cess: pre-processing of input images, defining the unit of
analysis, selecting a comparison method, and obtaining
the change map for interpretation and accuracy assessment
(Lu et al., 2004).

Regarding the unit of analysis, techniques can be
grouped in seven categories, namely: pixel, kernel, image-
object overlay, image-object comparison, multi-temporal
image-object, vector polygon and hybrid schemes. Consid-
ering comparison methods, there are six categories to
group them: layer arithmetic, post-classification change,
direct classification, transformation, change vector analysis
and hybrid change detection. Of these, the pixel and post-
classification categories remain the most popular choices
(Tewkesbury et al., 2015).

In post-classification change approaches, and in general,
in supervised methods, a common resource is to exploit all
available spectral channels due to the descriptive nature of
the results allowing specific thematic questions to be
answered (Tewkesbury et al., 2015). The aim of these meth-
ods is to generate a CD map, where modified and transition
classes in land cover can be identified, i.e. it highlights
specifically what has changed. Here, the changes are
detected and labeled through supervised classification
schemes; therefore, post-classification comparison is a suit-
able method to implement when sufficient training sample
data are available (Lu et al., 2004). Thus, in some of these
methods, ground truth information is required. However,
in most practical cases, that information is not available
or it is not easy to obtain (Bovolo et al., 2012).

If ground truth information is not available, there are
unsupervised methods that produce a binary CD map in
which change areas are distinguished from unchanged
areas, i.e. relative change detection shows that something
has changed but does not specify what that change is; i.e.
they are not able to properly detect the presence of multiple
changes in an unsupervised and automatic way (Bovolo
et al., 2012; Lu et al., 2004). On the other hand, their main
advantage is to provide a faster method for quickly com-
paring images.

In recent years, kernel-based methods have shown high
accuracy in unsupervised change detection problems. In
Kernel-based methods, the non-linear decision function is
generally obtained by running a linear algorithm in a
higher dimensional feature space (Shah-Hosseini et al.,
2015b; Shah-Hosseini et al., 2015a), i.e. the concept of
the difference image, common to many change-detection
methods, is extended to higher dimensional feature spaces
(Volpi et al., 2012).

Recently, a broad group of kernel-based methods have
been proposed. In Shah-Hosseini et al. (2015b), a similarity
space based on few labeled training samples in high dimen-
sional spaces was used to propose a hybrid kernel-based

change detection method. In another work (Bovolo et al.,
2010), the change detection problem is formulated in a high
dimensional Hilbert space, and it is treated as a minimum
enclosing ball problem, solving it by means of support vec-
tor domain description. The approach showed in Bovolo
et al. (2007), combines the CVA (Change Vector Analysis)
technique with a semi-supervised SVM classifier, exploiting
a pseudo-training set and the original images to obtain the
change detection map. In Shah-Hosseini et al. (2015a), two
approaches for automatic CD framework are presented:
the first method is based on the integration of CVA
method, kernel-based C-means clustering, and kernel-
based minimum distance classifier; in addition, a SVM-
based CD method is presented and analyzed. One more
non-linear approach is proposed in Volpi et al. (2010);
here, an initialization routine is used in conjunction with
an unsupervised cost function to optimize the kernel hyper
parameters.

There are some aspects to consider when using kernel-
based CD approaches. These aspects have to do with the
fact that non-automatic kernel-based methods require
labeled samples for training a classifier (Shah-Hosseini
et al., 2015b), otherwise optimal kernel parameters and
precise training samples have to be defined (Volpi et al.,
2010; Shah-Hosseini et al., 2015a); therefore, some of these
methods could be inefficient as far as run time is concerned
(Shah-Hosseini et al., 2015b). For instance, in all the tests
presented in Bovolo et al. (2010), the initialization thresh-
old value was obtained according to a manual-trial-and-
error procedure; moreover, in order to reduce the compu-
tational load of the training stage, the resulting sets were
randomly sub-sampled. Furthermore, the output in
kernel-based methods detects changes of any kind.

In conclusion, the complexity and the computational
load of the kernel-based methods can be a disadvantage
related to the simplicity of methods that reduce the CD
problem to a 1-D problem by considering only the magni-
tude of the spectral change vectors (Bovolo et al., 2012). In
the latter case, unsupervised CD procedures that use a sin-
gle band are easy to apply and interpret, since a simple
thresholding operation is required to obtain a change/no-
change map (Bovolo et al., 2012). Its challenge is to find
an algorithm that includes the different results of all bands
so they can be integrated in a single result. For example, if
an algorithm makes a comparison of each band for two
MT images (n-bands), n difference images are obtained.
Hence, it is necessary to apply » thresholds obtaining n
change masks. Subsequently, it is necessary to define a
methodology that integrates the n results; this methodology
can be a mathematical operation, such as a normalized dif-
ference (integrates two bands) or spectral-quality indices
that take into account all » bands in the comparison pro-
cess. Consequently, the simultaneous use of multiple bands
can produce better results (Im et al., 2007), since the multi-
band problem is reduced to a 1-D problem by considering
only the magnitude of spectral change vectors (Bovolo
et al., 2012).
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Some approaches suggest using spectral similarity met-
rics in order to integrate multiple bands in a CD process,
as presented in previous work (Renza et al., 2013), which
was aimed at detecting general changes, i.e. for any land
cover class. However, in some cases it may be beneficial
to detect different kinds of changes, for example changes
in vegetation, water bodies, urban land, etc. (Bovolo
et al., 2012). In spite of this, some other methods allow dis-
crimination between selected land cover classes (Wang
et al., 2009). For example, this is the case for methods
based on Normalized Difference Vegetation Index (NDVI)
differencing, which provides specific changes in vegetation
(Teng et al., 2008). In this respect, where spectral similari-
ties are required to identify different land cover change
classes, spectral angular distances can be a useful solution,
however, when using spectral similarity metrics, they can
consider all available spectral bands, thus avoiding the
need of prior information about relevant features
(Bovolo et al., 2012). Nevertheless, the problem to properly
detect the presence of different kinds of changes persists.

In this sense, the objective of this paper is to propose an
unsupervised CD methodology with the following charac-
teristics: the use of multiband images reducing the problem
to a 1-D problem, low computational load, and it is a gen-
eric approach to detect a specific kind of change (vegeta-
tion). The proposed unsupervised CD methodology uses
a spectral similarity metric, which can serve to detect the
required kind of change (vegetation). The proposed
approach uses the Spectral Angle Mapper (SAM) between
a reference spectrum and each of the MT images, where the
reference spectrum is defined according to the typical spec-
tral signature of vegetation. SAM comparisons are bina-
rized using a threshold and then combined through a
logical operation.

2. Proposed CD method

In this section the proposed unsupervised CD approach
is described. The unit of analysis is the pixel, whereas the
comparison method is SAM-based using both MT images
and a reference spectrum; furthermore, for obtaining a
change/no change map a thresholding is used. The whole
process consists of the following operations: pre-
processing, reference spectrum, comparison, thresholding
and combination, and evaluation. A general scheme of
the proposed method is shown in Fig. 1.

2.1. Pre-processing

In this first phase, applying correction or using corrected
data is a requirement for quantitative analysis of MT
images. Therefore, the two MT images have to be radio-
metrically and atmospherically corrected and co-
registered (Bovolo et al., 2012). One important thing to
keep in mind, if it is possible, is to use data from the same
sensor and to acquire it at the same time of the year (Lu
et al., 2004).

1. Pre-
MS 1 processing
Time 1
Reference
Spectrum
1. Pre-
MS2 processing
Time 2

Fig. 1. Illustrative representation of the flow chart for change detection
with SAM index.

According to the above, two MS images of SPOTS sen-
sor with a spatial resolution of 10 m and 1024 x 1024 pixels
were selected. They correspond to 2005 and 2008 and were
captured in the same month (June) in order to minimize the
effect of solar lighting and seasonal differences. These
images were registered in ENVI Software using 89 tie
points, a first order polynomial function and bilinear
resampling; a RMS Error of 0.556519 was obtained. The
zone comprises parts of the Community of Madrid (Spain)
and both show a high proportion of changes in vegetation
covers. In this case, the bands of the visible spectrum (G, R)
and Near-Infrared (NIR) of the SPOTS5 MS images were
used. The false color composition (NIR-R-G) for the two
MT images are shown in Fig. 2.

Also, two MS images of Quickbird sensor with a spatial
resolution of 2.5 m and 1500 x 1500 pixels were selected.
They correspond to April, 2004 and January, 2005. The
images correspond to an areca over Indonesia that was
impacted by the December 26, 2004 tsunami, where many
vegetation areas were washed out by the tsunami. The
images are publicly available through the ENVI tutorials
on the following link http://exelis.http.internapcdn.net/ex-
elis/data/ENVITutorialData.zip. In this case, the bands of
the visible spectrum (B, G, R) and Near-Infrared (NIR) of
the Quickbird MS images were used. The true color com-
position (R-G-B) for the two MT images are shown in
Fig. 3.

2.2. Obtaining reference spectrum

The reference vector is defined based on the variation of
reflectance with wavelength, i.e. the spectral reflectance for
a particular land cover. The spectral reflectance is the ratio
of reflected energy to incident energy as a function of wave-
length. Also, the average of the values of spectral-
reflectance over well defined wavelength bands, make up
the spectral signature of a terrain feature by which it can
be distinguished (Rees and Rees, 2013; Aggarwal, 2004).
Fig. 4 illustrates schematically the spectral reflectance of
four materials, in the wavelength range from 0.4 to
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Fig. 2. SPOTS5 Multitemporal images used. 1024 x 1024 pixels false color NIR, red and green composition. The upper left corner is placed at 446404.73 E
and 4470730.4 N (UTM geographic coordinates, zone 30, WGS-84). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

(a) Image of 2004.
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(b) Image of 2005.
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Fig. 3. Quickbird Multitemporal images used. 1500 x 1500 pixels true color composition. The upper left corner is placed at 743959.221 E and
586709.556 N (UTM geographic coordinates, zone 46 N, WGS-84). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

1.05 pm, highlighting the G, R and NIR spectral bands.
Here, it should be noted that the shape of such a curve rep-
resents the characteristic of the material and so allows to
identifying it. The spectral signatures of water in Fig. 4
show that the most of longer visible wavelengths and the
NIR radiation is absorbed or transmitted, i.e. it is not
reflected. In the spectral signature of soil it should be noted

that the most of radiation is either reflected or absorbed.
The distinctive spectral signature of vegetation is character-
ized by a low reflectance in the visible region because of the
presence of pigments, such as chlorophyll; also it is charac-
terized by a scattering effect in the NIR, i.e. a high reflec-
tance roughly between 0.7 and 1.3 um (Rees and Rees,
2013; Aggarwal, 2004).
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Fig. 4. Typical spectral reflectances of vegetation, soil and water in the
visible and NIR regions (schematic) (Rees and Rees, 2013; Aggarwal,
2004).

According to the above, the typical spectral signature of
healthy vegetation in MS images (SPOTS5 and Qickbird)
will be used to obtain the reference vector (Fig. 4). Using
these images, the spectral signature of healthy vegetation
(from highest to lowest) correspond to NIR, Green, Blue
and Red bands. According to Fig. 4, their average reflec-
tance (R) values are equal to Ry = 0.88, Rgeen = 0.12,
Breen = 0.06 and Ry, = 0.03. To normalize data, each of
these values is divided by the sum of all factors and multi-
plied by 2"“~! (Eq. (1)) (where nbits is the radiometric res-
olution of the MS bands, i.e. the amount of bits used to
represent each pixel).

S, O

Fori=1,2,...,N, and N is the number of bands of the
MS image. Finally, the reference vector (RV) is given by
the Eq. (2).

RV =W, Wy ... Wy 2)

2.3. Image comparison by means of SAM index

The core of the image comparison in the proposed
method is a spectral angular distance (SAD). The SAD
has previously been used as the metrics for classification
and clustering of MS images (van der Meer, 2006). So,
Spectral Angle Mapper (SAM) and Spectral Correlation
Mapper (SCM) procedures may be two effective solutions
for mapping these similarities. In Carvalho Junior et al.
(2011), these main correlation measures were used for
unsupervised detection of multiple changes in multitempo-
ral images; in that study case, the similarity measure that
had the best performance was SAM, and therefore this is
the spectral similarity metric selected in this paper to the
proposed CD method. The SAM index measures the spec-
tral similarity of an image against a reference spectrum by
calculating the angle between them; both the image and the

spectrum are treated as a vector in a space with dimension-
ality equal to the number of bands. On the other hand,
SCM is a variant of cos(SAM ), however SCM standardizes
the data, centralizing it in the mean of the two spectra; i.e.
SCM is similar to Correlation Coefficient of Pearson (De
Carvalho and Meneses, 2000; Carvalho Junior et al., 2011).

According to the above, the basis of image comparison
is an index of spectral similarity derived from multi-band
images known as SAM. This method allows us to deter-
mine the degree of spectral similarity of an image against
a reference spectrum. This similarity is expressed in terms
of the average angle between the two spectra. At each abso-
lute position k, the image spectrum will be a vector whose
elements correspond with the pixel values at location k for
each of the bands. That is, the two spectra are handled as
vectors in space, whose dimension is equal to the number
of bands (N); therefore, for each pixel the result is an angu-
lar difference measured in radians or degrees. Generally,
these results can be averaged for the whole image, in order
to obtain an overall measure of spectral distortion.

To obtain the difference images, the reference vector
(Eq. (2)) is compared against each one of the image vectors
of the two MT images. The image vector (IV) of each MT
image is given by the Eq. (3).

IV yr,(k) = [DN1x DNay DNy ] (3)
where i = 1,2 corresponds to the index of each MT image.
k=1,2,..., K is the absolute position of pixel k£ — th, being
K =X xY,and X, Y the image dimensions. DN is the pixel
value (Digital Number) at position k, andn =1,2,..., N is
the index for each one of the MS bands.

The result of comparing the image vector of each MT
image with the reference vector is a difference image (DI).
Each pixel of the DI for each MT image is obtained as
the absolute value of the spectral angle between the two
vectors, Eq. (4).

(RV (), 1V yr,(k)) )
DIy, (k) = arccos( : 4)
" IRV () |y - 1V rar, ()5
where (-, -) represents scalar product and || - || denotes the

L? norm (Euclidean norm or the ordinary distance from the
origin to the point), and i = 1,2 corresponds to the index
of each MT image.

As previously discussed, the objective of SAM is to iden-
tify changes in spectral shape, being invariant to the gain or
intensity values (often cited in remote sensing as a suppres-
sion of illumination effects). Its result is an angle value
ranging from 0 to 7/2, where zero is its ideal value, indicat-
ing the absence of spectral distortion, but not necessarily
indicating intensity equality. In order to include measures
for both spectral and intensity distortion, SAM can be used
in conjunction with spectral measurements as ERGAS (in
French “Erreur Relative Globale Adimensionnelle de
Synthese”) (Renza et al., 2011). However, when images
present intensity distortions, as in the case of satellite
images, this SAM feature can result in an advantage. That
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is, SAM index allows the comparison of spectral differences
in two images, preventing their radiometric differences
from becoming significant (Moughal and Yu, 2014).

It is important to note that the proposed method could
detect changes including any number of bands of the orig-
inal images. To add, regardless of the number of used
bands, the image resulting from the comparison is a single
band and it is the input to a thresholding process. Also,
regarding the characteristics of the bands, these can be
selected according to the type of CD you wish to prioritize,
i.e. the angle between two spectra can increase or decrease
depending on the bands submitted to it. This is particularly
important in hyperspectral images; therefore, some
approaches have been proposed to select bands that
increase the angle between two spectra (Keshava, 2004).

2.4. Thresholding and combination

In the previous step, each image is compared against the
reference vector. The result is a gray-scale image (DIyr,)
that has to be thresholded to discriminate between change
areas and non-change areas. In this work, the selected
thresholding technique for the proposed scheme is the
Kapur technique (Kapur et al., 1985), because of it has
shown one of the best performances for change detection
(Rosin and Ioannidis, 2003; Sahoo et al., 1988; Sezgin
and Sankur, 2004; Rosin, 1998). Then a binary image
(BI) is obtained by applying a threshold in each one of
the MT images.

B]MT; == l‘h(DIMT‘) (5)

where #h() is the thresholding function given by the Kapur
technique. In the compared methods (NDVI differencing
and basic-SAM methods), in addition to the Kapur
method, Otsu (1975) and Tsai (1985) thresholding tech-
niques are evaluated.

The binary images obtained after thresholding each MT
image, discriminate between vegetation and non-vegetation
zones. These binary images are combined through selection
of the pixels where there is no coincidence in vegetation
zones, i.e. where there are changes. This phase is made
by means of an XOR operation; therefore, finally the
change mask is obtained through the Eq. (6).

CM = Blys, © Blys, (6)

2.5. Evaluation

To assess the accuracy of a classification method, one of
the most used approaches is the error matrix evaluation
method (Foody, 2002). In order to determine the accuracy
of CD analysis, error matrices are constructed by compar-
ing the obtained results against change supervised areas.
Then, Overall Accuracy (OA) and Kappa (x) indices are
calculated to evaluate the binary change image (Lu and
Weng, 2007). OA is the sum of the pixels correctly classified
divided by the total number of reference pixels, while x

index is a statistical measure of coincidence between two
maps, in this case, between the output classification
change/non-change map and the reference map.

Being FP the false positives, FN the false negatives, TP
the true positives, 7N the true negatives, and
T = FP + FN + TP + TN. False positives are the unchanged
pixels erroneously categorized as changed pixels; false neg-
atives are changed pixels categorized erroneously as
unchanged pixels; true positives are changed pixels cor-
rectly categorized and true negatives are unchanged pixels
correctly categorized. Finally, OA is calculated, as follows

(Eq. (7)):
TP + IN
A =
0 TP + 1IN + FP + FN @
And the kappa index is obtained according to the Eq.
(8):

_04-P,

K= TP, (8)
where P, is defined as in Eq. (9):
Pe:{PlXP2}+{(1—P1)X(1—P2)} (9)

where P; is the number of pixels categorized as changed,
divided by the total number of pixels of the image (i.e.
P, = (TP + FP)/T)). P, is the real number of changed pix-
els divided by the total number of pixels (i.e.
P, =(TP+ FN)/T)).

OA ranges from 0 to 1, being this last the ideal value (i.e.
all changed and unchanged pixels are correctly classified).
The kappa index ranges from —1 to 1, where —1 means
perfect and consistent disagreement, 1 means perfect agree-
ment, and 0 means a random level of agreement/disagree-
ment (Srivastava et al., 2012).

Finally, a detailed scheme of the proposed method is
depicted in Fig. 5.

3. Implementation and evaluation of the method
3.1. Change detection algorithms

Since the proposed method is unsupervised, it would be
feasible to compare the results against a supervised
method. In this case, a classification-based method (Sup-
port Vector Machine, SVM) was selected as the reference
method (Srivastava et al., 2012). Besides, two well-known
unsupervised methods were compared to SVM, too: NDVI
differencing and basic-SAM (between MT images, i.e. with-
out reference spectrum). It should be noted that these
methods can be considered as unsupervised methods, since
they do not require training data, and as long as an auto-
matic thresholding technique is used. So, the following
methods were implemented:

Method 1: SVM classification. For SVM supervised clas-
sification, the training areas were selected according to
four thematic classes (buildings, water, soil and vegeta-
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Fig. 5. Detailed representation of the flow chart for change detection with SAM index.

tion) derived through scatter diagram methodology
(Martinez et al., 1999) and visual image inspection. In
both MT images, the training areas were carefully
selected in the same geographical location and the corre-
spondence with the same class was verified. Next, the
vegetation classes were extracted and their absolute dif-
ference was taken as an image of change.

Method 2: Proposed method. Through SAM, comparing
each MT image against the reference spectrum using the
method described above. Thresholding with Kapur
method and then applying an XOR operation between
the two masks.

Method 3: Basic-SAM (without reference spectrum).
Apply SAM between the MT images and threshold with

Kapur, Otsu or Tsai method obtaining a change/non-
change mask.

Method 4: NDVI differencing. Apply NDVI in each MT
image and obtain the absolute difference between the
two NDVI components; thresholding with Kapur, Otsu
or Tsai method.

For the evaluation process, the proposed method and

the three additional methods mentioned above were
applied to the two datasets. In each case, a binary mask
indicating the changes was obtained. The masks resulting
from the proposed method and the basic-SAM and the
NDVI methods were compared against the mask obtained

with the

SVM-based method. Matrices errors were
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obtained and quantitative assessments for the OA and
indices were calculated.

3.2. Results and discussion

3.2.1. SPOTY5 case

The difference images obtained by the evaluated com-
parison methods are shown in Fig. 6. The result of the
comparison obtained with the proposed method (compar-
ison of the reference spectrum against the image of 2005
and the image of 2008) are showed in Fig. 6(a) and (b)
respectively; in these two figures it is clear that the vege-
tation zones can be easily discriminated (bright zones),
allowing the integration of the two results (XOR opera-
tion). In the case of the difference images obtained with
the basic-SAM method (Fig. 6(c)) and NDVI method
(Fig. 6(d)), it is also possible to discriminate the vegeta-
tion zones; however, other types of coverage are showed
as bright zones, particularly the water bodies in the lower
right.

For quantitative evaluation, overall accuracy and kappa
indices were obtained for the proposed method, the basic-

SAM and the NDVI-based methods with respect to the
post-classification method based on SVM (Table 1). In
the last two cases the three thresholding methods discussed
above are evaluated.

According to the results showed in Table 1, the OA and
k values for the proposed method are the highest because it
has the greatest amount of true positives and the lowest
number of false negatives. In the Basic-SAM and NDVI
methods, it can be seen that they obtain a high value of
OA, however their kappa index is low; this is mainly due
to the OA only takes into account the pixels correctly clas-
sified (true positives and true negatives), whereas kappa
index takes into account both the pixels correctly classified
as the pixels misclassified (false negatives and false posi-
tives). When the results of the compared methods (Basic-
SAM and NDVI) are analyzed, it should be noted that
these have a high number of false negatives for all thresh-
olding techniques; also they have a high number of false
positives for all methods of thresholding, except for the
Kapur method. The latter is mainly due to the high thresh-
old value given by this technique, leading to a detection of
few change zones.

(c¢) Basic-SAM

(d) NDVI

Fig. 6. SPOT 5 Case. Difference images (grayscale) obtained by the evaluated comparison methods.
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Table 1

SPOT 5 Case. Classification accuracy results obtained for the unsupervised detection methods, through the comparison against a supervised method

(SVM-based) (results are shown in percentages).

Comparison and thresholding method C NC Total OA (%) K (%)
Proposed C 31535 3539 35074 99.36 90.11
NC 3128 1010374 1013502
Basic-SAM C 8279 2453 10732 97.25 35.47
(Kapur) NC 26384 1011460 1037844
NDVI C 9103 3975 13078 97.18 36.99
(Kapur) NC 25560 1009938 1035498
Basic-SAM C 22785 53462 76247 93.77 38.28
(Otsu) NC 11878 960451 972329
NDVI C 22661 57565 80226 93.37 36.52
(Otsu) NC 12002 956348 968350
Basic-SAM C 20606 35242 55848 95.30 43.22
(Tsai) NC 14057 978671 992728
NDVI C 20506 43087 63593 94.54 39.14
(Tsai) NC 14157 970826 984983
Total 34663 1013913 1048576

C: Change (pixels) and NC: No-change (pixels).

Fig. 7 corresponds to the mask of changes obtained
through each of the four comparison methods mentioned
above. Again, in Basic-SAM and NDVI, the thresholding
with Kapur, Otsu and Tsai methods are evaluated. The
change mask obtained with the proposed method (Fig. 7
(b)) are clearly very similar to the change mask obtained
with the SVM-based method, agreeing with the results of
Table 1. The important thing here is that only areas that
correspond to vegetation are detected (e.g. no water bodies
in the lower right are detected). To justify this result, it is
necessary to observe the false color images of Fig. 2. As
can be seen, there are no vegetation zones in any of the
water bodies of these images, so the result of a change
detection process in vegetation should not include these
areas.

The change masks obtained with the basic-SAM method
and NDVI method by using Kapur thresholding (Fig. 7(c),
(f)) show a high number of false negatives, i.e. there are
several vegetation zones that are no detected. In these
schemes, since the difference image is dark, the lower the
threshold value is, the higher the number of true positives;
their problem is that by lowering the threshold value, the
higher the amount of false positives. This can be seen as
the detection of areas that do not correspond to vegetation
appear (e.g. water bodies in the lower right). However, as
discussed above, the spectral signature of healthy vegeta-
tion is far from the spectral signature of water. In the
NDVI method, these areas are probably detected by the
presence of underwater vegetation; in the case of basic-
SAM, the simple spectral difference of the two areas is what
originates its detection, i.e. it does not consider the spectral
signature of the type of coverage to be detected. The above
can be evidenced with masks obtained using the methods of
Otsu and Tsai (Figs. 7(c), (d), (), (g)).

3.2.2. Quickbird case

The proposed method was also tested on Quickbird
images, evaluating the performance of the proposed
method in natural disasters monitoring. For this purpose,
the Blue, Green, Red and NIR bands were used. The refer-
ence spectrum was obtained according to Fig. 4, using the
aforementioned bands. Regarding the thresholding tech-
nique, here the threshold value was obtained by means of
balancing of false positive rate against the false negative
rate; This was applied both in the proposed method and
in the NDVI and SAM-based methods. This was done to
test the systems in the best case possible, specifically as
far as kappa index is concerned. In this way, the difference
images obtained by the evaluated comparison methods are
shown in Fig. 8. Here again the two comparison images
obtained with the proposed method, allow to easily dis-
criminate the vegetation zones, to later obtain the differ-
ences between them (Fig. 8(a) and (b)). In the case of the
difference images obtained by the methods based on
basic-SAM and NDVI (Fig. §(c) and (d)), the bright areas
are the zones of change, which will later be obtained
through the thresholding process. In any case, the changes
present in the evaluated images correspond, in great major-
ity to changes in vegetation, reason why the results of these
last two methods will improve with respect to the SPOTS
case.

Fig. 9 corresponds to the mask of changes obtained
through each of the four methods mentioned above. The
masks obtained by the evaluated methods are clearly very
similar, there are, however slight variations between each
mask. Particularly, the masks obtained with the SVM
and the proposed methods show some small areas that
are not present in the masks of the other two methods,
which results in an increased number of true positives iden-
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(c) Basic-SAM (Kapur)

(d) Basic-SAM (Otsu)

(e) Basic-SAM (Tsai)

(f) NDVI (Kapur)

(g) NDVI (Otsu)

(h) NDVI (Tsai)

Fig. 7. SPOT 5 Case. CD masks obtained for the unsupervised detection methods and three different thresholding methods, through the comparison
against a supervised method (SVM-based). Change areas in white and non-change areas in black.

tified in the proposed method, and therefore it also leads to
an increased number of false negatives in the change masks
obtained with the NDVI and SAM-based methods.

Table 2 shows the proportion of values obtained for
false positives, true positives, false negatives and true neg-
atives, and the corresponding overall accuracy and kappa
indices. Here again, quantitative evaluation is made
respect to the post-classification method based on SVM.
It should be noted here that the proportion of data cor-
rectly identified (true positives and true negatives) by the
proposed method is higher than that of the other two
methods, while the zones incorrectly detected (false posi-
tives and false negatives) are lower. Although OA values

are similar for all three methods, the k index shows a bet-
ter result in the proposed method, since the number of pix-
els correctly classified is higher, whereas the number of
misclassified pixels is lower, in respect to the two other
methods.

3.2.3. Comparison in terms of computational load

In order to perform a comparative analysis regarding
computational load, the execution time of the unsupervised
detection algorithms was measured. The algorithms were
run on Windows 8.1 (64-bit), with a 3.2 GHz Intel Core
17-4790S processor and 8 GB of RAM. The results are
shown in Table 3.
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(a) Proposed-Image of 2005

(b) Proposed-Image of 2008

(c) Basic-SAM

(d) NDVI

Fig. 8. Quickbird Case. Difference images (grayscale) obtained by the evaluated comparison methods.

For the proposed method the execution time increases,
mainly due to the application of the SAM algorithm to
each image independently. However, the runtime remains
acceptable for real-time applications.

4. Conclusion

The proposed scheme offers an alternative that uses a
typical spectral signature of vegetation as a reference spec-
trum for unsupervised change detection using the SAM
index. The scheme has showed better results (overall accu-
racy and kappa index) than other unsupervised methods,
particularly NDVI differencing and basic-SAM (without
reference spectrum). These results were obtained by com-
paring the unsupervised methods against a supervised
scheme based on post-classification SVM; in this sense,
the results of the proposed method are similar to those
given by the supervised scheme, supported by low detection
of false positives and false negatives.

The proposed method was implemented in images of
two different sensors. In the case of MS SPOTS5 images,

the Green, Blue and NIR bands were used for the defini-
tion of the reference spectrum. The result was an overall
accuracy greater than 99% and a x index greater than
90%. This indicates that the results of the method were able
to identify most of the changes in vegetation present in an
image with different soil types, as well as to avoid the detec-
tion of changed areas that did not correspond to vegeta-
tion. In the case of Quickbird images, the NIR band and
the three bands in visible spectrum were used for the defi-
nition of the reference spectrum; also, the selected area pre-
sented natural disaster, with abundant changes in
vegetation. The result was an accuracy greater than 97%
and a x index than 82%. It should be emphasized here that
the dimensions of this image were superior to those of
SPOT image, and that the radiometric resolution of this
type of images is 11 bits. In any case, the results for the pro-
posed method were better than the corresponding results
for the methods implemented to detect changes in a specific
land cover. The above corroborates that the main novelty
of the proposed method consists in the detection of changes
in a specific land cover type (vegetation) and that its results
are similar to those given by a supervised scheme.
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(c) Basic-SAM

(d) NDVI

Fig. 9. Quickbird Case. CD masks obtained for the unsupervised detection methods and a supervised method (SVM-based). Change areas in white and

non-change areas in black.

Table 2

Quickbird Case. Classification accuracy results obtained for the unsupervised detection methods, through the comparison against a supervised method

(SVM-based) (results are shown in percentages).

Comparison and thresholding method C NC Total OA (%) K (%)

Proposed C 142408 28347 170755 97.5 82.16
NC 27896 2051349 2079245

Basic-SAM C 119153 36961 156114 96.08 70.90
NC 51151 2042735 2093886

NDVI C 126046 22576 148622 97.03 77.45
NC 44258 2057120 2101378
Total 170304 2079696 2250000

C: Change (pixels) and NC: No-change (pixels).

Table 3
Execution times for the different evaluated unsupervised change detection
methods.

Image Proposed NDVI Basic-SAM
Spot (s) 0.5983 0.26934 0.7264
Quickbird (s) 2.4799 0.4099 1.6500

Another objective of the proposed method was the low
computational load. In this sense, execution times were
compared against unsupervised methods of low computa-

tional load. In this context, the main finding is that the pre-
cision results of the method are comparable to those of a
supervised method, while the execution times are compara-
ble to those of unsupervised methods of low computational
load.

Finally, although these results are based on the use of
limited data, further work is required such as the use of
other types of coverage and the use of images with a higher
number of spectral bands, as is the case of hyperspectral
imagery.
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