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Abstract—Different waveform-based discrimination parame-

ters were tested using multivariate statistical analysis to develop a

real-time procedure for discriminating explosions from earthquakes

at regional distances in the Iberian Peninsula. This work enabled a

purge of the Spanish National Seismic Catalogue for the period

2003–2014. The training data consisted of waveform-based signal

properties in the time and frequency domain for events (earth-

quakes and explosions) recorded during the selected time period by

the Spanish Broadband National Network and Sonseca short-period

Array of the Instituto Geográfico Nacional (IGN). For each station

and its associated training dataset, a discriminant function was

defined as a linear combination of the measured variables. All

station-specific discriminant functions were then combined with a

weighting scheme to test the training events, revealing that 86 % of

the events were consistent with the analysts’ judgement. The

application of this method to the whole of the IGN’s seismic

database for the studied period gave an 83 % success rate; how-

ever, a 91 % success rate is reached if events are classified using at

least three stations and 100 % confidence levels.

Key words: Earthquakes, explosions, real-time identification,

waveform-based discrimination, multivariate analysis.

1. Introduction

The spatial distribution of earthquakes and the

location pattern of quarry blasts in Spain and its

vicinity are found to be quite similar. Besides

numerous areas known for the occurrence of blasts

for a long time, artificial events often occur in areas

that are seismically active too. Due to the large

number of such explosions routinely detected every

year by the Spanish National Seismic Network

(SNSN) of the Instituto Geográfico Nacional (IGN),

discriminating between these artificial events and

earthquakes poses a great challenge.

During routine data processing, SNSN analysts

have the difficult task of classifying by eye analysed

events as either earthquakes or artificial events, since

only a few of the latter events are ever confirmed by

the facility owners. Therefore, seismic discrimination

in the SNSN is based simply on analysts’ criteria,

which, in turn, chiefly depend on their expertise. The

detection threshold of the SNSN is very low (at

present, around 1.5 mb(Lg) for most of Spain) and,

consequently, the number of misclassified events is

so large. This contamination of the earthquake cata-

logue may introduce false interpretations in future

hazard studies.

Seismicity in the Iberian Peninsula and the sur-

rounding areas is associated with the contact zone

between the Eurasian and African plates along the so-

called Azores–Gibraltar fault zone (Fig. 2a), which is

purely oceanic. As soon as the collision approaches a

zone where the plates are of continental nature (the

Ibero–Maghrebian region) (Fig. 1c), the contact

becomes more complex, and a single dominant plate

boundary cannot be identified (MEZCUA and RUEDA

1997). The seismic activity is confined to the south-

ern and southeastern parts of the Iberian Peninsula,

the Iberian cordillera and further north by the

Pyrenees.

Blasting in Spain mainly occurs in mines, quarries

or within civil engineering projects (e.g., during the

construction of roads and dams). Mining in the Ibe-

rian Peninsula has been gradually declining since the

1960s, most notably since the 1990s in the coal- and

ore-mining sectors. Similarly, the number of active
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quarries and civil engineering projects dropped

sharply in the past decade due to the slowing down of

economic activity during the economic crisis. Con-

sequently, the number of artificial events in Spain has

substantially decreased in this period (Fig. 1b, d). It is

clear from Fig. 1 that the distribution of earthquakes

and explosions follows similar patterns, and an

effective discriminant procedure needs to be imple-

mented to separate these two types of events.

To develop a reliable system for discriminating

between explosions and earthquakes, we first selected

the most relevant discriminants found in the literature

that can be measured automatically from recorded

waveforms. We collected short-period data from the

Sonseca Array operating in central Spain and

broadband data from the Spanish Broadband National

Network (SBNN) for the period 2003–2014. Next, we

tested separately training samples from the Sonseca

Array data and all the SBNN single-station data, and

then performed a statistical multivariate analysis to

define a discriminant function for each station’s

training dataset by a linear combination of the mea-

sured parameters. Finally, we combined all the

discriminant functions with a weighted discriminant

method to test the events in the training data (TRN).

The whole dataset for the study period was used to

verify the ability of the proposed method to correctly

identify fresh seismic events.

Figure 1
Distribution of events for the period 2003–2014 in the official IGN seismic database according to analysts’ judgement: a all events (115,126);

b the time distribution of the annual number of explosions and earthquakes, c events classified as earthquakes (40,463) and d events classified

as explosions (74,663)
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2. Review of Waveform-Based Discrimination

Methods

The different source properties such as dimen-

sions, time function, focal mechanism and depth, of

both explosions and earthquakes are reflected in the

observed waveforms. No single method or criterion

can yet ensure reliable discrimination between the

seismic signals generated by earthquakes and explo-

sions. An effective approach to separate them will

have to make use of several discriminants (WÜSTER

1993; WALTER et al. 1995; STUMP et al. 2002).

We analyse, here, the most effective waveform-

based discriminants taken from the literature, which

we then evaluate using statistical multivariate anal-

ysis. ALLMANN et al. (2008) divided these methods

into three types: phase amplitude ratios (BENNETT and

MURPHY 1986; WÜSTER 1993), spectral methods

(TAYLOR et al. 1988; WALTER et al. 1995) and coda

studies (SU et al. 1991).

Quarry blasts are commonly rippled-fired and can

often be identified by the characteristic time-invariant

spectral modulation caused by the time delays

between subsequent explosions (ALLMANN et al.

2008). BAUMGARDT and ZIEGLER (1988) studied

records from the NORESS short-period array and

found that the spectra of rippled-fired blasts in

Scandinavia have a distinctive modulation that differs

from the spectra of earthquakes in the same region.

Spectral modulations in the records of quarry blasts

were also observed in Kazakhstan (HEDLIN et al.

1989) that were absent in spectra from records of

single-event calibration shots (CHERNOBAY and GAB-

SATAROVA 1999). However, STUMP et al. (2002)

provided evidence of accidental, near-simultaneous

detonations of a large amount of explosives during

standard delay-fired explosions, which further com-

plicates the solving of the discrimination problem.

Such events have single-fired characteristics and may

prove to be problematic in discrimination analysis.

It is generally believed that both spectral shapes

and ratios in regional phases (Pn, Pg, Lg) are useful

for distinguishing earthquakes from explosions

(POMEROY et al. 1982). BENNETT and MURPHY (1986)

confirmed the usefulness of measurements of the Lg

spectral ratios in the 0.5–1 and 2–4 Hz frequency

bands in discriminating between Nevada Test Site

(NTS) (USA) explosions and nearby earthquakes by

showing that these measurements were greater in the

case of artificial events. Similar results were obtained

by TAYLOR et al. (1988) testing the performance of

spectral ratios for higher frequency bands (1–2 and

6–8 Hz). However, WALTER et al. (1995) found that

in the case of the NTS, the best discriminant perfor-

mance is achieved by combining phase and spectral

ratios. TAYLOR (1996) used the high-frequency Pg/Lg

discriminant between frequencies of 0.5 and 10 Hz

that were found to be very effective and displayed

improved separation between earthquakes and

explosions as the frequency increased. MURPHY et al.

(2009) found that NTS explosions exhibited a spec-

tral peak in the Lg coda-derived spectra, in sharp

contrast to earthquakes, and related it to the result of

scattering higher-model Rg near the source region,

which scattered off into the coda wavefield. Coda-

derived source spectra showed pronounced peaking

as a function of depth relative to nearby earthquake

source spectra (using the same path and site calibra-

tion corrections for both nukes and quakes).

CHERNOBAY and GABSATAROVA (1999) imple-

mented a multi-parameter cluster analysis algorithm

for routine classification of seismic events in the

northern Caucasus (Russia). They performed event

classification for each station separately using the

spectrogram method and/or methods based on the P/S

spectral ratios. They achieved a 98 % success rate

and identified 19 different groups of sources at

regional distances in an area of moderate seismicity.

The Vogtland area (Germany and Czech Republic)

has been thoroughly studied by WÜSTER (1993, 1995),

KOCH and FÄH (2002), and KOCH (2002b). WÜSTER

(1993) established a combined discrimination

scheme using a simple majority voting technique and

obtained a 98 % classification success rate. Events

were recorded by GERESS short-period array, and the

parameters considered—both individually and in

combination with the voting system—were (1) the

maximum amplitude ratios (Lg/Pg, Lg/Rg) and (2) the

spectral properties of the P- as well as S-wave group.

Spectral peaks and slopes were extracted by autore-

gressive-moving average (ARMA) modelling,

master-event correlation and a search for time-inde-

pendent frequency structures in sonograms. Full

discrimination was achieved subsequently by WÜSTER
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(1995) using a multivariate quadratic function based

on four parameters: the spectral decay and the spectral

variance of the P- and S-wave spectra. We considered

the spectral variance (KOCH and FÄH 2002) as a

measure of the misfit of the regression line fitted to the

spectra, that is, the area between the spectrum and the

regression line. KOCH and FÄH (2002) pointed out the

usefulness of spectral amplitude ratios at two different

frequency bands (Lg) and of Pg/Sg amplitude ratios in

event identification. Those authors also denoted the

possibility of weighting according to station success

rates to improve the overall discrimination capability.

KOCH (2002b) suggested that spectral variance also

provides good performance for event discrimination

for other parts of Germany and not only for the

Vogtland region.

Using a multivariate statistical analysis, FÄH and

KOCH (2002) succeeded in classifying correctly 97 %

of events by calculating a discriminant function for a

training sample of confirmed explosions and earth-

quakes in Switzerland. The coefficients of the

discrimination function were determined for the

whole network and not individually for each station.

The parameters analysed were epicentre-station dis-

tance, P/S signal energy, S/P ratio for the frequency

bands 4–7 and 7–10 Hz, and the relative noise energy.

The discrimination of a seismic event was performed

using a weighted sum over the discriminant function

output of all station data. The weight was the success

rate for the training set at the corresponding station.

The success rate of the whole training sample (85

events) was 100 % and, with an extended dataset with

194 events added to the training sample (total = 279

events), was 94 %. The introduction of station cor-

rections improved the results of the proposed method.

Using the multivariate discriminant analysis pro-

cedure described by WÜSTER (1993), RUEDA (2006)

applied multivariate statistics to discriminate between

explosions and earthquakes for a limited dataset of

220 events recorded by the Sonseca Array (Spain).

This author studied the performance of the spectral

variance and decay of the P- and S-waves’ spectra

using only two parameters at a time and deriving the

corresponding linear discriminant function (LDF). To

compute all the parameters, RUEDA (2006) developed

a weighting scheme according to success rates. This

procedure correctly identified nearly 90 % of the

studied events. When the spectral decay and variance

of the Lg wave were considered jointly, the perfor-

mance was better than when they were considered

individually. The same applies in the case of the P

wave. Also, a sample of 94 events from the SBNN

was studied using the same variables as for the

Sonseca short-period Array, along with the Lg-wave

ratios in two frequency bands (1–2/6–8 Hz and 1–2/

7–9 Hz). In this case, the results of the identification

agreed with the analysts’ criteria in 84 % of cases.

ANDERSON et al. (2007) developed a mathematical

statistics formulation of the most commonly used

teleseismic discriminants, integrating them into a

probability model which could be extensible to other

discriminants. ANDERSON et al. (2009) established a

mathematical model to combine the depth from travel

time, presence of long-period surface energy, depth

from reflective phases and polarity of first motion and

compute the standard error of these discriminants at

NTS from a multistation approach.

Other approaches such as the application of

methods based on artificial neural networks (ANN)

(DOWLA et al. 1990) have also been successful; these

techniques discriminate automatically weak signals at

regional distances from low-magnitude events

including quarry blasts, underwater explosions and

natural sources events (SCARPETTA et al. 2005) and

landslides, explosion-quakes and volcanic micro-tre-

mor signals (ESPOSITO et al. 2006). Recently,

FARAHANI et al. (2012) have proposed an adaptive

neuro-fuzzy inference system (ANFIS) for classifying

low-magnitude events (earthquakes and mining

blasts) based on a successful application of this

method in France (MULLER et al. 1999).

In this study, we take advantage of the large

amount of data available in the SNSN to test different

waveform-based discrimination parameters to

develop an automatic procedure using multivariate

statistical analysis for discriminating between artifi-

cial and natural events at regional distances in the

Iberian Peninsula.

3. Data Used in the Analysis

The available dataset for the study consisted of

115,126 events (74,663 explosions and 40,463
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earthquakes, as identified by analysts) taken from the

IGN seismic database for the period 2003–2014

(Fig. 1a). The analyst decision is based on the mor-

phology of the waveforms and the time of the day the

event occurs. Explosions are more likely to occur

only during daylight. Besides this, explosions are

sometimes confirmed by contacting the local

authorities. As continuous digital recording (3C for

SBNN and vertical component for Sonseca Array)

was required in our study, we limited our analysis to

91,139 events, of which 28,534 were classified as

earthquakes (0.1 B mb(Lg) B 5.5) and 62,605 as

explosions (0.1 B mb(Lg) B 3.2) by the SNSN

analysts.

In the Iberian Peninsula, the SBNN consists of 44

broadband stations located in low-noise locations

within a distance of 100–150 km of each other. From

these broadband stations, we only used 32 VSAT

(very small aperture terminal) satellite communica-

tion system stations located on the Spanish mainland,

which provided data during the studied period

(Fig. 2b). We also used the Sonseca Array located in

central Spain formed by 19-element short-period

instruments in a circular aperture diameter of 9 km

(Fig. 2c). Standard time domain beam forming sig-

nificantly improves the signal-to-noise-ratio (SNR) of

recorded data and is highly effective in suppressing

noise and emphasising signals.

To find the most suitable signal properties for

separating two populations (explosions and earth-

quakes) and design a discriminant rule for classifying

new events, we first required a sample of confirmed

or most likely to be correctly classified events.

Separate samples of events referred as training

Figure 2
a Location of the study area; b distribution of broadband stations (triangles) and the Sonseca Array (star) in the SNSN. Black symbols denote

stations currently in operation, while white symbols indicate stations not in operation. The time period for the data used in the analysis is given

below the name of the station; c distribution of the 19 short-period instruments in the Sonseca Array
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samples (TRN) were taken from each station to

derive a discriminant function.

We imposed an SNR criterion for broadband

stations and Sonseca Array data. We calculated the

SNR for the P and Lg by simply dividing the power

spectra amplitude of the signal by the power spectra

amplitude of the noise in the 7–12 Hz frequency

range. For the Sonseca Array beam, we selected from

the dataset only events with SNR C20 dB. Given that

we had no confirmed sample of explosions and to

remove small magnitude natural data that could have

been misclassified as artificial, we picked only clas-

sified artificial events occurring between 10 AM and

4 PM and excluded earthquake data in the same time

interval. Likewise, artificial events that occurred

outside of known blast areas (where most of the

explosions occur) were removed from the training

event sample. Finally, given that we aimed to select

events within the same range of magnitude, we

established an 2.5-mb(Lg) upper threshold.

For the broadband station data, we selected events

with an SNR C23 dB following the same procedure

as for the Sonseca Array training set data. The indi-

vidual training data sets (TRN) for the three

broadband stations – ETOB (Albacete), ELOB

(Orense) and EGRO (Huelva) – and Sonseca Array

(Toledo), are shown in Fig. 3 and their corresponding

values with the rest of the stations in Table 1.

Figure 3
Examples of the training events considered (blue crosses for explosions and red circles for earthquakes) for three broadband stations: ETOB

(Albacete), ELOB (Ourense), EGRO (Huelva) and Sonseca Array (Toledo)
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4. Selection of the Signal Properties Used

in the Regression Analysis

To quantify and characterise differences in source

type, we selected the following properties that can be

automatically calculated from the seismograms recor-

ded by the Sonseca Array and BB stations (Figs. 4, 5):

In the time domain: maximum Lg amplitude/max-

imum P amplitude ratio (WÜSTER 1993), logarithms

of Lg amplitude ratios 1–2/6–8 Hz and 1–2/7–9 Hz

(KOCH 2002a; KOCH and FÄH 2002; RUEDA 2006).

Theoretical P and S arrivals are automatically

calculated. For each selected event, we used three

different time windows containing the preceding

noise, the P- and the S-wave trains. Once filtered

(0.5 Hz high pass for the P/Lg ratios), the maxi-

mum absolute amplitude was measured and

stored.

In the frequency domain, we measured spectral

peaks and slopes: P and Lg spectral decay and

spectral variance (KOCH 2002a; KOCH and FÄH 2002;

RUEDA 2006).

Table 1

Number of events in the training sample (TRN) for each station and for the whole TRN using the events only one time, and number of

explosions and earthquakes. CC stations’ canonical correlation coefficients. Success rates of the station training samples with single-station

D functions and multi-station weighted D functions (MSWM, where several stations contribute to event classification) applied to each station

TRN events

Station 2003–2014

TRN events

EX EQ CC TRN single-station

DF success rate (%)

TRN weighted DF

success rate (%)

EADA 1077 497 580 0.60 80 86

EALK 1193 518 674 0.70 87 88

EARA 352 166 186 0.84 93 94

EARI 359 181 178 0.65 82 91

EBAD 1181 584 597 0.52 75 88

EBEN 179 92 87 0.38 87 69

EBER 45 22 23 0.67 87 80

EBIE 1788 515 1273 0.73 89 92

ECAB 1053 564 489 0.56 79 89

ECAL 4062 3834 228 0.36 83 85

EGOR 478 50 428 0.54 90 94

EGRO 887 432 455 0.66 85 87

EJON 574 175 399 0.65 86 89

ELAN 740 545 286 0.58 77 82

ELOB 833 415 418 0.71 86 87

EMAZ 385 185 200 0.66 82 88

EMIJ 119 56 63 0.46 67 75

EMIN 2933 1663 1270 0.71 87 89

EMIR 426 141 285 0.51 76 84

EMOS 1528 875 653 0.52 74 81

EMUR 1036 154 882 0.43 80 86

ENIJ 367 93 274 0.63 85 89

EORO 935 261 674 0.68 86 90

EPLA 374 181 193 0.52 75 80

EPOB 3716 2550 1166 0.62 81 84

EPON 3038 2319 719 0.58 81 88

EQES 4050 853 3197 0.68 89 92

EQTA 1860 230 1630 0.50 84 92

ERTA 1349 653 696 0.50 73 84

ESAC 1613 841 772 0.66 84 87

ESPR 420 103 317 0.74 91 91

ETOB 803 372 431 0.78 90 92

SONSECA 974 529 445 0.88 97 98

TRN 27,731 16,172 11,559 86
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For each selected band pass-filtered (4–15 Hz)

window, we calculated the power spectra, which are

also corrected for noise by subtracting the noise

spectra from the signal spectra, and the spectral power

logarithm is computed. The slope of the regression

line fitted for that spectrum shows the spectral decay.

P and Lg amplitudes for the Sonseca Array data

were taken from vertical components after

Figure 4
Example of a 1.8-mb(Lg) explosion recorded at the Sonseca Array at a distance of 113 km. Left waveforms of 18 short-period Sonseca Array

channels and beam. Top data segments and associated power spectra for noise, P and Lg waves. Middle logarithm of the spectral power of the

P and Lg waves (and associated regression line). Bottom Lg maximum amplitude relationships

220 M. Garcı́a Vargas et al. Pure Appl. Geophys.



beamforming, while for the three-component broad-

band stations, P was measured in the radial and Lg in

the transverse components.

5. Multivariate Statistical Analysis: Single-Station

Discriminant Functions

To derive a station’ linear discriminant function

(D) that encloses those signal properties (Xi)

considered being relevant, based on Fisher’s linear

discriminant (FISHER 1936) we can write:

D ¼ v1X1 þ v2X2 þ � � � þ viXi þ a; ð1Þ

where a is a constant and vi the discriminant coeffi-

cients or weights for the variables. The function

coefficients (vi) were determined individually for

each station training dataset and chosen to maximise

the distance between the two groups (explosions and

earthquakes).

Figure 5
Graphical example of the parameters measured for 3C records from a 1.8-mb(Lg) earthquake at an 89-km epicentral distance from EADA

broadband station (Córdoba). Top left three-component record (and rotations). Middle noise and Lg data segments. Bottom the corresponding

power Lg and noise spectra. Top right the logarithm of the spectral power of the Lg wave and regression line (where spectral variance and

spectral decay values are measured). Bottom right Lg wave maximum amplitude relationships
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To begin with, for each station training dataset,

we first examined whether there were any significant

differences between the two groups in terms of each

independent variable using group means and an

analysis of variance (ANOVA). The test of equality

of group means gave low values for Wilk’s lambda

statistic, which provides strong statistical evidence

for significant differences between the means of the

two groups for all variables and all stations.

We used the stepwise method to introduce the

selected parameters into the function to find the best

set of predictors and to eliminate those found to be

redundant. We first entered the best correlated

independent variable and then, one by one, the

remaining variables until the subsequent variable

adds no significant predictive power to the squared

canonical correlation coefficient, which is equivalent

to the coefficient of determination (R2). This proce-

dure resulted in the elimination of the logarithm of

the Lg amplitude ratio between 1–2 and 6–8 Hz

(L1268) from the Sonseca Array training dataset, as

it was found to be redundant. Finally, we tested the

role of the predictors in the discrimination: Wilk’s

lambda criterion reveals that for all the station

datasets, all the variables included in the analysis

add some predictive power to the discriminant

function.

To test the performance of the resulting discrim-

inant function, we used the canonical correlation

coefficient (CC), which is obtained from the multiple

correlations between the predictors and the discrim-

inant function. This coefficient provides an index of

overall model fit, interpreted as the proportion of the

variance explained (R2). The maximum coefficient of

0.88 was obtained for the Sonseca discriminant

function, a value that corresponds with a model that

explains 77 % of the variation in the grouping vari-

able (Table 1).

For each event (k), we obtained a discriminant

score using the station (j) discriminant function

(Eq. 1). The discriminant score, Dk,j(Xi), is, thus, a

linear combination of discriminant variables. The

dependent variable in the regression is set as 1 if it is

an explosion (EX), or 2 if an earthquake (EQ). To

classify new observations, we used 0 as the cut-off

value. If for a particular event, the discriminant score

of the function was less than or equal to the cut-off

(Dk B 0), the event was classified as an explosion,

whereas if it was greater (Dk[ 0), the event was

classified as an earthquake. The closer the group

centroids are, the greater the classification error is

likely to be, because the overlapping area between the

two populations will be larger.

To estimate the success rate of a station (j), we

applied the D function (Eq. 1) to each event (k) of the

station training sample to obtain a discriminant score

Dk,j(Xi), which indicates that the event is considered

an earthquake (EQ) or an explosion (EX). This pro-

cess was carried out for all the events in the station

dataset, and the station identification success rate was

evaluated by comparing the results with analysts’

decisions.

The success rates of the discriminant functions

applied to single-station training datasets varied from

one station to another, with the Sonseca Array

reaching 97 % of correctly classified events accord-

ing to analysts’ decisions (Table 1). It is well known

that the performance of discriminants depends on

parameters such as tectonic region, frequency, phases

used (WALTER et al. 1995), blasting practices and the

complexity of regional wave propagation (STUMP

et al. 2002). This explains the different success rates

we obtained depending on the station dataset

(Table 1). The performance of each of the parameters

for the Sonseca Array is also shown in Figs. 6 and 7.

Therefore, defining the discriminant functions sepa-

rately for each station compensates for regional wave

propagation and local effects.

An example of how taking into account more than

one discriminant improves the rate of success is

shown in Fig. 6 for the Sonseca Array dataset. Fig-

ure 7a depicts two-variable discrimination plots for

the Sonseca Array training data. When separating

artificial and natural events, three-variable plots are

an improvement over two-variable plots (Fig. 7b).

In terms of the signal properties, our results show

that Lg spectral variance plays a major role in the

single-station discriminant functions, as previously

reported by WÜSTER (1995) and KOCH and FÄH

(2002). We found that for all stations, explosions had

greater values of both Lg and P variance than earth-

quakes. The analysis of the Pearson correlations

between the predictors and the station D function

showed that this parameter has a moderate-to-strong
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correlation with the D function in 29 out of 32 sta-

tions (91 %). At the Sonseca Array, we observed that

the P spectral variance had the best discriminant

power.

The second most-correlated variable was the

logarithm of the Lg amplitude ratio in 1–2/7–9 Hz

(91 % of the stations with moderate-to-strong corre-

lation). The logarithm of the Lg amplitude ratio in

1–2/6–8 Hz (L1268) exhibits very similar results as

the logarithm of the Lg amplitude ratio in 1–2/

7–9 Hz (L1279). In the end, the L1268 parameter was

eliminated from the regression analysis of the Son-

seca Array as it was found to be redundant (Fig. 7a).

By contrast, the Lg spectral decay gives different

results depending on the station, and only in 47 % of

the stations did the D functions display medium-to-

strong correlation. We generally obtained higher

values of Lg spectral decay for earthquakes.

The maximum amplitude ratio Lg/P appears to be

only poorly related to group distinctions;

nevertheless, when considered together with the other

parameters, these parameters add some predictive

power. We found that explosions typically show

lower Lg/P ratios than earthquakes but with a con-

siderable degree of scatter, as WÜSTER (1993) had

noted.

The Lg spectral variance and L1268 and L1279

seem to be strongly correlated with the D functions in

at least 66 % stations. Finally, the amplitude Lg/P

ratio was strongly correlated in first station (3 %),

whereas Lg spectral decay was only strongly corre-

lated in eight stations (25 %).

6. Application of a Multi-Station Weighted Statistical

Discrimination Method to a Training Sample

To classify TRN events occurring during the

period 2003–2014, we combined the 33 station dis-

criminant functions (one for each of the 32 broadband

Figure 6
Performance of the discriminant variables tested for the Sonseca Array training dataset: (1) individually, (2) all variables or (3) only variables

selected by the stepwise method (excluding L1268). All = rate of success of the variable; EX and EQ = rate of explosions and earthquakes

correctly identified, respectively
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stations and one for the Sonseca Array). We

employed jointly various stations using the weights

based on the canonical correlation (CC) between the

predictors and the resulting discriminant function and

the position of the discriminant score in the sample

space (Dk,j(Xi)) (Eq. 2). The use of several stations

for classifying new events is called multi-station

weighted method (MSWM). Accordingly, for any

particular event, the better the performance of the

linear function for the training dataset for each station

Figure 7
a Separation of explosion and earthquake populations with two-variable discrimination plots and b a three-variable plot (log Lg amplitude

ratio for 1–2/7–9 Hz, P and Lg spectral variance) for the Sonseca Array training sample as an example of a simple application of the

multivariate statistical analysis
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considered and the higher the discrimination score,

the more the station contributes to the final result.

The confidence level assigned for a particular

event in the MSWM is the combination of the

canonical coefficient of the stations involved and the

discriminant score defined before. Thus, the confi-

dence of the results depends on the number of

stations used with a reasonable SNR, the performance

of each function of the single-station training sample

and the discriminant score reached when applied to a

particular station discriminant function.

The discriminant score of an event is evaluated by

the following expression:

DMSWM ¼ 1

N

XN

j¼1

½Dk;jðXiÞCCj�; ð2Þ

where N is the number of stations recording an event

with a certain SNR value; Xi represents the signal

properties; Dk,j (Xi) the discriminant score for an

event at a particular station (Eq. 1); CCj the canonical

correlation of the station; and DMSWM the discrimi-

nant score for the studied event with the MSWM.

When DMSWM is B0, the event is identified as an

explosion, whereas DMSWM[ 0 indicates an

earthquake.

We applied this methodology to the TRN used

previously as calibration data. The average success

rate of the single-station discrimination functions

applied individually to the corresponding station

training samples was 83 %, while the use of several

stations for each event identification (multi-station

weighted method) resulted in 87 % of events being

correctly classified (Table 1), an increase in the

identification success rate of 4 %. The overall success

rate for the TRN events using the MSWM reached

86 %. However, this improvement was not confirmed

by all the stations since EBEN and EBER showed a

significant worsening. We found several reasons for

differences in stations’ discriminant power, including

the goodness-of-fit of the training sample, the blast-

ing practices employed in the area, the propagation

path of the waves and station noise.

On the other hand, weighting the D functions

according to the canonical coefficient and the dis-

criminant score gave 10 out of 33 (30 %) stations

with their training dataset success rates over 90 %,

with only two stations (EBEN and EMIJ) with iden-

tification rates below 80 %. The inclusion of the

discriminant score as a weight improved the success

rate by 1 % (compared with using only the canonical

coefficient of the station), although the number of

events classified with high confidence levels

improved significantly (5 %).

We considered removing from the analysis sta-

tions with low canonical coefficients and low

identification rates of the single-station D functions

throughout the training sample. Nevertheless, we

found no change in the success rate of the stations

when combined if the contributions of the EBEN,

ECAL, EMIJ and EMUR stations were not

considered.

7. Results of the Application to the June 2003–

December 2014 Dataset

To evaluate the consistency of the MSWM

developed here, we applied our discriminant

approach to the total dataset using all the weighted

discriminant functions. The total sample corresponds

to the 91,139 events included in the entire IGN

seismic database from the period June 2003 to

December 2014. Not all the signals could be used

due to the high noise level at several stations.

Waveforms with an SNR below 20 dB were

removed, which meant that 38 % of events were

excluded from the analysis. Accordingly, the method

was applied to a sample of 56,857 events, that is,

35,993 explosions and 20,864 earthquakes (accord-

ing to analysts’ classifications), which correspond to

all events with at least one station record of

SNR C 20 dB. The resulting classification of the

proposed algorithm agreed with the analysts’ criteria

in 83 % of cases (47,085 events) and disagreed in

17 % of cases. In total, 54,522 events (96 % of the

total dataset considered) had an acceptable level of

confidence (over 65 %), 45,701 events (84 %) were

well classified by analysts, but 8821 (6728 EX and

2093 EQ) conflicted with analysts’ decisions (16 %).

The highest percentage (75 %) of events classified

differently from analysts’ opinions corresponded to

artificial events that our method identified as

earthquakes.
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To show the differences between our classifica-

tion and analysts’ decisions, the events recorded by at

least three stations with SNR C 20 dB and 100 %

confidence levels in the results generated by the

MSWM method are shown in Fig. 8. This means that

all the stations that contributed to this result agree on

the diagnosis. The number of such events was 9734;

comparison with the analysts’ decisions was only

conducted for shallow events (at depths less than

10 km) and showed that 90 % of events were cor-

rectly identified.

As previously mentioned, the number of explo-

sions in the seismic database that are now classified

as earthquakes by the MSWM is greater than earth-

quakes considered now as explosions. The reason

may be related to the fact that analysts tend to

wrongly classify as explosions events that occur in

areas where explosions are frequent (Figs. 1d, 8b )

and misclassify as earthquakes events with epicentres

in seismically active areas (Figs. 1c, 8a). However,

we found two exceptions, an area near Cáceres (W

Spain) and Almodovar (S Portugal), where the algo-

rithm incorrectly identified a series of events with

explosion waveforms as earthquakes. These explo-

sions may be near-simultaneously delay-fired

detonated with single-fired characteristics that cause

the erroneous MSWM discrimination, as noticed by

STUMP et al. (2002). Consequently, these events are

not represented in Fig. 8. Therefore, the events

identified as earthquakes should be considered to be

included in the earthquake catalogue, while the

explosions should be removed.

8. Conclusions

The method developed in this paper is an objec-

tive real-time discrimination tool that does not

require human intervention. The results may help the

analyst working with a seismic network to finally

decide between artificial and natural seismicity. The

application of this method to the 2003–2014 Spanish

seismic database enabled us to identify new tectonic-

related seismic events and to eliminate events once

considered to be earthquakes that are now known to

be artificial.

We used multivariate statistical analysis to derive

linear discriminant functions based on the signal

properties of earthquakes and explosions recorded by

broadband stations and the Sonseca Array during the

period 2003–2014. Our results show that Lg spectral

variance plays a major role in the single-station dis-

criminant functions, as well as the logarithm of Lg

amplitude ratio in 1–2/7–9 Hz (L1279) and the log-

arithm of Lg amplitude ratio in 1–2/6–8 Hz (L1268).

The maximum amplitude ratio Lg/P appears to be

poorly related to group distinctions taken on an

individual basis. We observed that the combination of

Figure 8
Geographical location of events recorded by at least three stations with SNR C 20 dB and 100 % confidence level with classification by the

multi-station weighted discrimination method (MSWM) different from analysts’ interpretation. a Earthquakes from the seismic database now

identified as explosions (107 events) and b explosions now identified as earthquakes (503 events)
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various discriminant parameters in a discriminant

function defining a separating hyperplane improves

the separation between explosion and earthquake

populations and, consequently, enhances the dis-

criminant power of our analysis.

We obtained a separate discriminant function for

each station and for the Sonseca Array, and computed

them jointly for new event identification. This

improved the separation of the properties of explo-

sions and earthquakes, and enhanced the

classification results. When applying MSWM to the

total sample, we noticed that disagreements between

analysts and the MSWM output were greatest in the

case of explosions, as previously noted by RUEDA

(2006). We believe that this could be due to the fact

that low-magnitude seismic events occurring in day-

time in areas where explosions are frequent are

typically misclassified as explosions by analysts.

We achieved a 91 % success rate when classify-

ing events using at least three stations with a 100 %

confidence level. The summing of the discriminant

function results for the different stations can help to

reduce the effects of the radiation pattern of the

seismic source; therefore, the more stations used, the

more efficient will the subsequent identification of

the seismic event be (FÄH and KOCH 2002).

The algorithm proposed here could be used to

purge the Spanish National Seismic Catalogue and to

classify in real time new incoming events. Never-

theless, the method should only be applied to shallow

events (\10 km focus depth) and with stations with

an acceptable SNR (at least 20 dB). We observed that

the choice of 20 dB as the upper level of SNR did not

guarantee a good enough signal for data measurement

in all stations. Some stations have systematically high

levels of noise and have poor discriminant power. We

detected that, when the SNR increases, no improve-

ment is observed in the success rate for events

recorded for at least two stations with 100 % confi-

dence levels and remains constant at 90 %. We noted

that the overall rate of success of the MSWM remains

over 80 % until SNR is lower than 5 dB.

It is important to emphasise that the MSWM is an

independent tool that can assist analysts’ work and

that its results should always be used critically.

We anticipate that the application of the pro-

posed method will introduce a degree of error into

the final results due to a selection of the training

events based on factors such as analysts’ decisions.

Other factors that could affect success rates include

possible errors when choosing the training sample

and the subsequent weakness of the discriminant

function derived from the data, the presence of

single-fired detonated explosions, and the consider-

ation of non-shallow events that could hamper the

waveform-based discrimination of the type that we

used. The method proposed here is based on the

main differences detected between delay-fired

explosions and tectonic earthquakes. Although the

majority of mining explosions are delay-fired, this

method will have certain difficulties in classifying

contained, single-fired or near-simultaneous delay-

fired explosions. As mentioned above, it is impor-

tant to take into account the lack of a sample of

known membership (confirmed explosions or earth-

quakes), which could result in more classification

errors depending on analysts’ expertise in the events

in question.

We believe that collecting new data from con-

firmed explosions and earthquakes would enhance the

success of the proposed method although, due to the

intrinsic nature of the problem, no complete identi-

fication of artificial events will be possible.
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